Nice to see ma hippo is popular.
We've gained a lot of knowledge of vcu's over the years, but sadly this is plagued by the arguments about how it works and how to test it. I would be the first to admit the one wheel up test is not perfect, but it's the easiest test we have. Jack up one wheel and that's it. You don't need to take the wheel, props, vcu etc oft. So it's something most can do. The bench test is the best option but this involves removing the vcu which isn't something most want to do. It's also annoying if you want to test regular. Whilst the bench test is the best option... it's difficult enough to get peeps to do the one wheel up test which is much easier. I've bench tested my new one over a year ago but not got round to putting the video up. I've started going though the backlog of diagnostic video's I have so it will get done. I've also done the one wheel up test on it. The biggest problem with the one wheel up test is brakes catching or factors causing the transmission not to be as free moving as it should. If the results are high or worrying then peeps should try the bench test option. There's no science behind this... it's a cautionary option unless they find a reason why the test took longer like the brakes catching.
From what we know...
The vcu has resistance across itself all the time.
Resistance varies based on factors like heat and torque applied across it.
Turning a vcu is the only comparison we have available be it one wheel up test or bench test.
The torque turning the vcu on a FL1 when driven is far higher than what we can apply without a big test rig to support it all. I have tried this and my bnd workmate gambolled before the vcu turned.
The higher the torque applied to the vcu the faster it turns under our test conditions as we int applying enough torque to get it to seize up more than it is in standard form.
Turing a vcu a few revolutions is enough to mix the fluid around the plates, if the fluid is in good condition.
The turnip test (named after vagrent) is a quick test to see what the vcu's temp is. This is an indication of what it's been doing whilst driven on the road.
When I use the term "seize" I'm talking about resistance across the vcu. The vcu has a certain resistance across itself when normal, which increases when torque is applied across it. it's turned. It's doesn't seize solid when in use if it's in good condition, but it does tend to seize momentarily as it's resistance across itself oscillates due to the fluid properties rapidly changing.
Most peeps don't realise how quick to react a vcu is, and how much resistance it has across itself in normal condition, until removing it. Wheel spin when pulling away in ma hippo happens far more often without the vcu putting power to the rear wheels than when it's fitted.
My explanation of how the vcu works is over ere:
http://www.landyzone.co.uk/lz/3080984-post22.html
I get a lot of pm's on ere and you tube regarding the test results. Ere's some of me favourites:
Wheel not turning = hand brake applied.
Wheel not turning = test not being applied to the wheel in the air.
Wheel spins too easily during test = vcu, props, rear diff or something in the ird missing.
Wheel spins too easily during test = too many wheels lifted.
I'm lucky that I spotted my vcu starting to fail, or at least taking longer on test which indicated something was changing. This was confirmed with a bench test. Some talk about eggspurts going for a test drive etc. This can be many miles or round in circles. Either way it's normally accompanied by builder talk: oooooo or breathing in through teeth, followed by emphasis on what they would do if it were there's. This normally ends in them selling you a vcu which you may or may not need. I feel sorry for those who only find out about it after their FL1 feks it's transmission.
If there is a definitive answer out there then I think it's still worth the effort to find it. I have to admit I've not been reading that many vcu freds for a while as I'm spending more time on diagnostic video's instead.
Long live the one wheel up test.